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Abstract these types of models in near to real time. The main difficulty of
this approach is choosing a set of forces (parameters for the model)
This paper proposes a simplifipdsition-baseghysics that allows that allow the dancer to dance and not fall on its face. However,
us to rapidly generate “piles” or “clumps” of many objects: local there are other domains for which the forces are easily determined
energy minima under a variety of potential energy functions. We but the physics is very difficult to simulate. Consider the problem
can also generate plausible motions for many highly interacting ob- of generating a “pile” or “clump” of many objects under gravity or
jects from arbitrary starting positions to a local energy minimum. mutually attractive forces. Creating or even verifying an equilib-
We present an efficient and numerically stable algorithm for car- rium state of the physical system is a complex problem. Consider
rying out position-based physics on spheres and non-rotating poly-further the problems of animating the sand in an hourglass or the
hedra through the use of linear programming. This algorithm is a sand on the beach as someone sets foot on it. Consider even the
generalization of an algorithm for finding tight packings of (non- problem of animating the molecules of fluid in a lava lamp. These
rotating) polygons in two dimensions. This work introduces lin- models involve many highly interacting three-dimensional objects.
ear programming as a useful tool for graphics animation. As its For even a modest number of grains of sand or molecules, the sim-
name implies, position-based physics does not contain a notion ofulation outstrips our computational resourées.
velocity, and thus it is not suitable for simulating the motion of
free-flying, unencumbered objects. However, it generates realistic
motions of “crowded” sets of objects in confined spaces, and it does
so at least two orders of magnitude faster than other techniques for
simulating the physical motions of objects. Even for unconfined ob-
jects, the new algorithm can rapidly generate realistic “piles” and
“clumps.”

This paper proposes a simplifipdsition-baseghysics that al-
lows us to rapidly generate “piles” or “clumps” of many objects:
local energy minima under a variety of potential energy functions.
Position-based physics allows us to rapidly generate plausible mo-
tions for sets of many highly interacting objects. We present an ef-
ficient and numerically stable algorithm, based on linear program-
ming, for carrying out position-based physics on spheres and non-
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jects. However, it generates realistic motions of “crowded” sets
of objects in confined spaces, and it does so at least two orders of
1 Introduction magnitude faster than other techniques for simulating the physical
motions of objects. Even for unconfined objects, the new algorithm
To generate realistic animation, recent work in computer graphics can rapidly generate realistic “piles” and “clumps.”
has focused on methods to simulate the motion of objects underthe  ggction 2 compares position-based physics to other methods of
laws of physics. Suppose one wants to create an animated dancegysical simulation such as velocity-based contact force methods.
Instead of laboriously choosing a sequence of poses, one creates g jescribes two problems which severely slow down velocity-based
model of a dancer with masses, joints, and forces, and lets the lawSpethods: local and global “ing.” Section 3 gives the formal def-
of physics do the dancing. The laws of physics are well understood nition of position-baseghysics and gives an algorithm to carry it
(for this domain), and current computers can simulate physics for oyt For a system of translating objects that involves only sphere-
sphere and sphere-polyhedron contacts, it is proved that the linear
programming based algorithm converges to an equilibrium of the

1Department of Mathematics and Computer Science, University of Mi-
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grants CCR-9157993 ancCCR-9009272. the algorithm using linear programming to simulate position-based

physicson a set of spheresinside a polyhedron, in particular, a set of
1000 spheres inside an “hourglass”. Section 5 shows how to han-
dle non-gravitational potential functions such as attraction among
the spheres. Section 6 presents results and running times, and Sec-
tion 7 discusses the implication of this work and directions of future
research.

1Also, numerical instability, which is a minor problem for the simulation
of robots or dancers, becomes a serious impediment when the number of
interacting objects rises into the hundreds, thousands, or beyond.
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2 Techniques for Physical Simulation for most layout applications the motion of the objects is immate-
rial, and only the final configuration matters. He attempted to carry

We categorize physical simulation techniques as acceleration-OUt compaction using a velocity-based method similar to Baraff's
based, velocity-based, or position-based. Acceleration-based meth{1]. but he found this to be very expensive computationally and
ods come closest to simulating true physics, and they are the mostlso numerically unstable. He formulated a position-based model
expensive to carry outin computation. Velocity-based methods are and algorithm. This algorithm uses Minkowski sums [27, 13] and
farther divorced from “reality” but are faster. Position-based meth- @ locality heuristicto calculate a maximum convex region of the
ods are the farthest from reality and the fastest. configuration space visible to the current configuration. Linear pro-
Spring model methods (also callgenalty methodg25] [26] gramming f.lnds the Iowest energy c.onflguratlonlln this region, aljd
are typical acceleration-based methods. They allow the objects tothe model jumps to th's configuration. According tq .h's experi-
overlap. For each pair of overlapping objects, there is a repulsive MeNtS, the method typically reaches a local energy minimum in five
force proportional to the amount of overlap. The ffésg repulsive or fewer Jumps even for a layout of more than 100.polygons.W|th
forces cause the objects to accelerate. Numerical integration con.UP t0 75 vertices per polygon. For the examples which were simple

verts acceleration to velocity and then to pios. These methods eno.u.gh for him to carry out the velocity-based minimi;ation, the
require many small time-steps when the acceleration is high. The position-based method was at least two orders of magnitude faster.

large number of steps results in a high computational cost. Also, Th.e algorithms presented in this paper also use po§ition-b§sed

it is often difficult to determine the correct step size. Incorrect dis- PhYSiCS. For sphere-sphere and sphere-polyhedron interactions,

cretization of time can cause unusual numerical results such as non-t,hey ?‘,0 not require explicit calculation of the Minkowski sum (un-

conservation of energy or momentum. Ilkg Li's method for pplygons). For polyhed(on-polyhedron inter-
actions, they do require calculation of the Minkowski sum, but un-

) like Li's locality heuristic they do not require that the polyhedra

[14] [1] [8] are examples of velocity-based methods. See [4] for be decomposed into star-shapedmponents. The new algorithms

a discussion of the many issues involved in contact force models. ! .
Rigid bodies are allowed to contact but not overlap. Given the cur- can s_olve_for the_ motions of s_phere_s and polyhedra, whereas Li's
’ algorithm is restricted to two-dimensional polygons.

rent set of contacts, the method computes a set of consistent ve- Interestingly enough, some recent work has m yfrom

locities such that no two contacting objects penetesteh other, the use of large complex optimization systems [5]. Position-based

The objects move with these velocities until a new contact occurs. hvsics reduces motion olanning to linear oroaramming. Instead of
The velocity-based method is much more stable and faster than the? Y P 9 prog 9.

acceleration-based method for two reasons: 1) it can exactly com-dleallj'ggJ ;Vggr:]?qn‘:recrgfﬂﬂggror)rgmr';ﬁﬁ?n C?i?ﬁaour(s;e;\l/dessr’n‘.’ﬁvgl sim-
pute the time of the next contact, and 2) the resulting time-step Pl prog 9 ry. X

tends to be much larger than that needed to accurately carry out[lz] discuss a number of ways optimization is applied in the field of

numerical integration. Even though these methods do not simu- graphics. Most of these involve “ei_ther starting or ﬁ”‘Sh!f?g prob-
’ lems.” Furthermore, most are non-linear. We believe thaitipas

late acceleration, they can handle increasingly sophisticated YPeS ced physics is unique in the way it uses linear programming to

of objects and forces: curved surfaces [2], friction [3], and flexible | on f finish

bodies [7]. Unfortunately, the velocity-based method is subject to generate a complex motion from start to finish.

two problems which caus’e small time-steps and thus high compu- Position-based physics yields realistic motion for crowded sets
b of objects. For free-flying objects, the motion can be less reason-

tational costLocal rattle occurs when one object bounces between able. However, even in situations for which position-based methods
two others (such as the rapid bouncing that occurs when you bring 7" = A : P e
give an unrealistic motion, there may be other applications. Recent

a paddle down on a bouncing ping-pong baB)obal rattle occurs - . . ;
when there are many interacting objects. Since there are so many, it\[/g(])r[lig]n manipulation of models makes use of non-physical motion

is inevitable thasomepair will make contact in a short amount of Finally, it is important to note the difference between position-

time. Even systems which can rapidly detect the next collision [16] based phvsi d particle-based ¢ £ | f articl

cannotreduce the number ofiligions. Each new contact forces us ased pnysics and particie-based systems. Examples of particie-

to recalculate the veldties. based systems are too numerous to note all of them. See [32]
[17] [31] [33] [10] [9] [21] for recent work. In general, particle-

J.l:.St E;)S a (;/eloc.;lrt]y-(g)asl_ed_ mtethodIeI|_rtr_1|natesdac|celet_rat|ons, %hased systems model moving particles with forces between them,
position-based method eliminates velocities (and also time, mo- o yjgid colliding objects. Simulating rigid objects using parti-

mentum, and kinetic energy). The model only needs to have a PO- les requi : ;
; ) o ) . quires a very steep repulsive energy gradient, and hence
tential energy function. Under position-based physics, the objects ,, icje-hased systems are subject to the same difficulties as other

are allowed to move f_rom their current confi_guration (positio_ns) acceleration-based methods: small time-steps and long running
to a lower energy configuration along any valid (non-overlapping) times

energy-diminishing path. Under a linear programming based algo-

rithm for position-based physics, the motion consists of a sequence

of steps yielding a piecewise linear path. Each step diminishes the3  Pgsition-Based Physics

energy as much as possible within some maximal valid convex set

of configurations surrounding the current configuration. This con- The philosophy behind pi®n-based physics is to dispense with
vex set depends both on contacts that are occurring and on all conycceleration, force, velocity, and time. The state of the system is the
tacts that might occur. Therefore the algorithm does not have to rrent configuration (position). The system has a potential energy

stop prematurely to handle a new contact, and there is no local “rat- i 5t depends only on the configuration. There is no notion of kinetic
tle”. Position-based physics also avoids globattted sinceeach energy.

object moves a maximal amount. Even if two objects in the model  gection 3.1 defines position-based physics and describes how
require only a small motion to come into contact, this does not pre- it can phe used for modeling and animation. Section 3.2 gives an
vent other objects in the model from moving farther, if they are able algorithm for simulating position-based physics on models with a
to. ) ) o ) ) smoothly convex decomposablerlap space: the set of forbidden

In his Ph.D. thesis [19] and in joint work with this author  configurationsis a union of convex regions with smooth boundaries.
[22, 23], Li introduced the concept of position-based modeling.
His application iscompaction finding tight packings of polygo- 2A region isstar-shapedf it contains at least one point which can “see”
nal objects in the plane. As he and others have noted [29, 30], the entire boundary.

Contact force model methods (also calkedalytical methods




This algorithm uses linear programming. Section 3.3 proves that

Let ¢ co be the initial configuration. The algorithm sets

several types of models have smoothly convex decomposable over+(0) = ¢. The algorithm proceeds in a sequence of steps. Dur-
lap spaces. Among these are models involving translating spheresng theith step, it constructs the portion of the curve frem — 1)

inside a fixed polyhedron. We describe what modifications are nec-
essary to handle multiple translating polyhedra.

3.1 Definitions

As per typical usageonfiguration spacdenotes the concatenation
of the degrees of freedom of the model. For a set spheres, the
configuration space has: dimensions. Thédree spaces the set
of configurations for which no pair of objects overfafhesefree
configurations are also referred towasdid or non-overlappingThe
complement of the free space is the sebweérlappinginvalid, or
forbiddenconfigurations. We denote the free spacefhy

We assume that the model has a potential energy which is a con-

tinuous and differentiable real-valued function on the configuration
space. For configuratian the energy is denotefi(c).

A valid motion under pasion-based physics is an energy-
diminishing path inF. Given a starting configuration& F, the

goal is to generate a continuous and piecewise differentiable curve

4(t) suchthat 1)y(0) = ¢, 2)4(t) € Ffort > 0, 3) E(4(t)) is
monotonically decreasing far> 0, 3) lim; ... v(t) = ¢« IS an
equilibrium @nfiguration A configurationcequi is anequilibrium
configurationif every valid curves(t) out of cequit (6(0) = cequil
ando(t) € F for ¢ > 0) is non-energy-decreasing: E(o(t)) >
0.

Note thatt is not time and:., may not be the equilibrium state

to (). Let us suppose the algorithm has constructed the curve up
to configurationy(z) = ¢;. Here is how it performs the next step.

e For each convex region?,, it constructs the half-space
H(ei, O5) asfollows. Firstit projects; onto the nearest point
PROJc;, O;) on O;. It computes the tangent planedd at
PROJc;, O;). This tangent plane bounds two half-spaces,
and H (¢, Oy) is the one which doesot contain the interior
of O;.

The algorithm computes the convex region
Iew Fy =) H(ci, 0y).
=1

AssumingF is closed (objects are allowed to touch), it fol-
lows thatl(c;, F) C F.

The algorithm computes the minimum energy configuration
ci+1 € I(eq, F)which is reachable by an energy-diminishing
path fromy(i) = ¢; toy(¢ + 1) = ci41 Within I(c;, F).

In general, the last step requires some sort of numerical integration.
However, if the energy function is linear, it can be accomplished us-
ing linear programming. Linear programming can easily compute

reached by a velocity-based or acceleration-based physics with thethe pointc;1 € I(ci, 7) which minimizes the energy. The algo-

same potential energy function. However, a limiting value of)

is a valid resting position: a “pile” or “clump”. To generate a de-
cent looking animation, we can samplét) in a way that makes

it appear that the objects in the model are moving with constant or
varying velocity, as desired. Also, as shown in Section 4.4, it is
possible to add additional constraints on the path to make it appeal
more natural.

3.2 Linear Programming Based Algorithm

This section gives an algorithm for performing position-based
physics on models with a particular type of free/forbidden space.
The algorithm is proved to have an equilibrium position as a limit
point. If the energy function is linear, then the algorithm can be
implemented using linear programming.

3.2.1 Smooth Convex Decompositions

AsetS ofR" is defined to beonvex decomposabfét is the union
of a finite number of convex sets. It$snoothly convex decompos-
ableif it is the union of a finite number of convex sets with smooth
boundaries. We use a standard dé&bn of smooth: a convex sét

is smooth if each point on the boundary has a unigue tangent plane

and outward unit normal vector and if this plane/normal is a con-
tinuous function on the boundary. Actually, it is easy to show that
if C is convex and if each point on the boundarybhas a unique
outward unit normal, then the normal vector varies continuously on
the boundary.

3.2.2 Algorithm

The following is an algorithm for position-based physics when
the overlap (forbidden) spac@ F is smoothly convex de-
composable. Regio® is the union ofr. smooth convex regions
01,02,05,...,0,,.

3We consider thexteriorof the container to be a fixed object, and hence
the definition of free space includes the container constraint.

rithm can sety(t), : < t < i+ 1 equal to the line segment from
to ci41. Sincel(¢;, F) is convex, this segment is valid.

3.2.3 Correctness and Convergence

(T he following theorem states that the limit points of the algorithm

are equilibrium points. This does not mean that the algorithm has a
unique limit. If we have a room full of falling objects, some objects
might already be on the floor. Any arbitrary motion of an object
along the floor does not change the gravitational energy. For odd
1, configuratiore; could have a particular object at one end of the
room. For even, it could be at the other end of the room. Thus, as
the rest of the objects settled into a “pile”, this one object may never
come to rest. Nothing in the definition of position-bagdysics
prevents it from bouncing from one wall to the other forever. In this
case, the system will have two limit points.

Any particular linear programming library will “break ties” con-
sistently. Therefore, it will not allow an object to bounce from wall
to wall forever. It is also possible to introducecanservativeen-
ergy term: each object is attracted to its current location. Both of
these facts can be used to ensure that the algorithm converges to a
unique limit. Section 4 illustrates both of these for spheres inside
a polyhedron. It is probably possible to modify the definition of
position-based physics and the algorithm to disallow “bouncing”.
However, there may be cases in whichw@ntthis behavior. Note
that “bouncing” is not like rtling. Bouncing does not affect the
amount by which the energy is reduced in one step, and therefore it
does not increase the number of steps required to reach an energy
minimum. For velocity-based methods, frequeritisions dimin-
ish the time-step and greatly increase the time required to reach a
minimum.

We remind the reader that the definition of an equilibrium point
depends only ot and the energy functio®’(). An equilibrium
point for position-based physics is the same as ailibum point
for any other type of physics. Therefore, the following theorem as-
serts that the algorithm converges to physically correct “piles” and
“clumps”. It does not get stuck at a non-édrium configuration.
However, most models have very many equilibrium configurations.



The algorithm does not necessarily converge to the same equilib-two unit normals. Thereforey has a unique unit normal vector.

rium as a “true” simulation of physics.

Theorem 3.1 For compact (closed and boundef) the sequence
co, €1, C2, C3, . .. generated by the algorithm has at least one limit
point. Each limit point is an equilibrium point.

Proof:
in a compact set. Letir, be a limit point. Supposa;r, is not an
equilibrium point. Therefore, there is a cumvét) out of cii, which

diminishes the energy. It follows that the energy decreasesout of ¢ = C; UC, U --- U

crim in the directiorw = ¢’(0) (the tangent vector ta(¢) att = 0).

For eacty, cim either lies outside or on the boundary®@f. If it

lies outside, then there exists> 0 such thatiim + tv € O; for
0 <t < e. If ciim lies on the boundary aP;, theny must lie in
the tangent plane t@; at cii, Or it must point intoH (ciim, O5).

Hence, there exists > 0 such thatcim + tv € I(ciim, F) for
0 <t < e. Also, E(cim + tv) has the same derivative at= 0

as E(a(t)). The conclusion is thaf the algorithm reached;.,,

the next step would be able to diminish the energy. 8sgt be the
amount of decrease.

The algorithm hasiir, as a limit point. The construction of
I(c;, F) uses only continuous functions. Fgrsufficiently close to
aim, the energy decrease= FE(c;) — E(ci4+1) can be arbitrarily
close todiir, . SinceE() is also continuous, there must exist same
such that

6lim
5

6lim
2

E(ci)—E(cnm) < and E(ci)—E(ci+1) =6; >
It follows that E(ci+1) < E(aim). Since the algorithm always
decreases the energy,, cannot be a limit point. This contradicts

the assumption that;,, is not an equilibrium point. |

3.3 Models with Convex Decompositions

This section examines some models with smoothly convex decom-
posable overlap spaces. It is shown how to apply the algorithm of

The existence of a limit point is a property of any sequence

It is easily shown that if a convex region with unique unit normal
vectors has continuous unit normal vectors: it is smooth. N

Corollary 3.3 If C' is convex decomposable andSifis smoothly
convex decomposable, théhd S is smoothly convex decompos-
able.

Proof: Let the decompositions be,

and S=5USU.---US.,.

It can easily be shown that,

! m
cos=|JJc e s

g=1h=1

In other words, the Minkowski sum is the union of the Minkowski
sum of each possible pair. By Lemma 3.2, each of these sums is
smoothly convex. |

3.3.2 “Good” Models

The following theorem describes the type of problem to which we
can apply the algorithm of Section 3.2.

Theorem 3.4 If 1) only translation is allowed, 2) all objects are
convex decomposable, and 3) at most one object is not smoothly
convex decomposable, then the overlap space is smoothly convex
decomposable.

Proof: For each pair of objectsA; and A;, at least one is
smoothly convex decomposable. Corollary 3.3 implies that the pair-
wise overlap space

{<Ui’vj> | v; —vi € Ai @ _A]}

Section 3.2.2 to the problems of animating and generating “piles” is smoothly convex decomposable. This transforms to a cylinder

of spheres and polyhedra under translation.

3.3.1 Minkowski Sum.

TheMinkowski suni24, 13, 27, 28] of two point-sets (a@&° in the
case of this paper) is defined

A& B={a+blac A be B}

For a point-set4, let A denote the set complement of A and define
—A={—al|a € A}. Foravectow, defineA +v={a +v|a €
A}. Note thatd + v = A @ {v}.

Suppose we have translating objectst;, A, Az, ..., A,. It
can easily be shown that; + v; andA; + v; overlap if and only
if v — Ui € A D —AJ.

Lemma 3.2 If C'is convex andb is smoothly convex, thefi & S
is smoothly convex.

Proof: It is easy to show thaf’ ¢ S is convex. Supposgis a
point on the boundary of' @ S such thatp has two distinct unit
normal vectors: andw’. Sinceu is a normal ap,  maximizes the
dot products - p over all points inC' & S. Sincep = ¢ + s where
¢ € C ands € S can be chosen independentymust maximize
u - s over all points ofS. Yet,p = ¢’ + s’ wherec’ € C and
s’ € S have maximum dot products witkl. Sinces has a unique
normal,«’ is not a normal at, and«’ - s < «' - s’. Therefore
w' - (c+s) <u'-(c+s’). Thereforep = c+ s does not maximize
the dot product with:’. This contradicts the assumption thelhas

{{v1,v2,...,0n) | v; —vi € A; ® —A;}
in the configuration space for the entire model which is decompos-
able into a union of smooth convex cylinders. |

3.3.3 Applications

The main application of this paper is a collection of translating
spheres in a polyhedral container. Clearly each sphere is smoothly
convex decomposable. The remaining object, the complement of
the container, is polyhedral and therefore convex decomposable:
simply cut it along every plane of every face.

We can not directly apply Theorem 3.4 to the problem of mul-
tiple translating polyhedra since a polyhedron is convex decom-
posable but not smoothly convex decomposable. However, we can
“smooth” a polyhedral regio® by adding a small spherical region
S. By Corollary 3.3,P & S is smoothly convex decomposable.
Of course, when we render the motion, we will display the original
polyhedra, not the smoothed polyhedra. They will have small gaps
between them equal to the diameterSofFor moving objects, this
will not be noticeable. Once, the objects form a “pile” or “clump”,
we can run the algorithm with smaller and smalieperhaps halv-
ing the radius each time, until the desired accuracy is attained.

Li and Milenkovic’s algorithm (for translating polygons in the
plane) uses a somewhat different framework than that of the algo-
rithm in Section 3.2.2. In essence, it chooses an arbitrary tangent
line/unit normal when the normal is not unique. This means, for
instance, that our compaction algorithm for polygons in the plane



might get “stuck” at a non-ediibrium configuration. We have (Intersecting a half-space with a polyhedron is easy if the faces are
never seen it get stuck in practice (but we really have no indepen- all convex: the intersection of each face with the half-space is also
dent way to verify an equilibrium other than visual inspection). Itis convex.) If some part of the boundary remains, then we increment
likely that one could safely animate multiple translating polyhedra £ and repeat this process. We stop when no point on the boundary
without geting stuck. However, we have not yet run any experi- of the polyhedron remains. The resulting set of linear constraints
ments. Baraff [1] indicates that correctly choosing a set of tangents on p; given by all instances of Equation 2 defines a convex region
at each non-unique contact is NP-complete. R: which is a projection of (¢;, F) of Section 3.2.2 (actually, it

can be a superset, but that can only improve the convergence).

4 Simulating an  Hourglass
Position-Based Physics

using 4.2 Minimizing the Potential Energy
For the hourglass example, the potential energy is the sum of the
The first section of the accompanying video tape demonstrates thez-coordinates of the spheres. This corresponds to the gravitational
simulation of an “hourglass” or “egg-timer” using ptisn-based energy of a set of spheres with equal mass.
physics. The main body of the hourglass is shaded as a curved sur- How do we find the next configuration? We need to solve for
face, but it is actually a polyhedron. Each horizontal cross section the configuration that minimizes the gravitational energy under the
is a 32-gon, and thus the sides of the hourglass have 160 faces. Inidinear constraints of Equations 1 and 2. This is linear programming.
tially, 1000 spheres are arranged in a 10 by 10 by 10 grid in the We simply pass this problem to a commercial linear programming
upper part of the hourglass. Rtisn-based physics calculates a (lo-  package, CPLEX.
cal) gravitational energy minimum for the spheres in the base. As  Theorem 3.4 implies that the hourglass algorithm cannot “stick”
a side-effect, it simulates the flow through the narrow “waist” of unless the actually physical system would also. Hence, the spheres
the hourglass. The video presents two hourglass simulations. Bothflow down the hourglass without “clogging” in the middle.
are shown at 30 frames per second. Each frame is an actual energy
minimization step. Rendering was done witmdrib.* The first
video has 750 frames, and the second has 812 frames.
Sections 4.1 through 4.3 describe how the first video was gen- We also bound each sphere to lie in a rotated cube centered at the
erated. Section 4.4 shows how extra constraints where added tocurrent position of the sphere. The cube has width two times the
generate a more realistic motion in the second video. The modified sphere radius, and it is oriented to have a vertex at mininraum
algorithm has acceleration and conservative forces. This video il- coordinate. This constraint serves to put an upper bound on the
lustrates how the path generated by position-based physics can benaximum distance a sphere can move in any one step.
controlled to increase the realism. This extra constraint serves two purposes. First, it keeps the
spheres from falling too fast. In the absence of this constraint, a
solitary sphere could fall to rest on theogind from an arbitrary
height in a single step. Second, by limg the motion of the
Instead of working iBn-dimensional space, we choose a convex spheres, we limit the pairs of spheres which can collide in the cur-
subset of the pairwise free spaces. We must do this for each pairrent step. That permits us to reduce the size of the linear program.
of spheres and each sphere with respect to the hourglass polyheWe do not add a pairwise constraint for two spheres that are too
dron. Taken together, these constraints are equivaldtiticr) of far apart to collide in the next step. We can use bucketing to detect
Section 3.2.2. nearby pairs of spheres in nearly linear time.
For a pair of sphereS; and.S; with radii r; andr; and current
positions (centerg);"" andp;™", define

4.3 Box Constraints

4.1 Pairwise Constraints

4.4 Acceleration and Conservative Forces
cur cur

cur _ Py TP The reader will notice that the spheres do not accelerate as they fall.
+ [pS™ — pe™| We could fix this by detecting if a sphere has fallen the maximum

amount, and if so, increasing the height of its bounding box by a
fixed amount. To make this work properly, we must use unrotated
boxes, unlike the rotated cubes of the previous section.

The reader will also notice that the spheres roll to the back of
the hourglass. Using unrotated boxes makes this effect worse: the
spheres fall to the lower-left-rear corner of the box, making them
fall at an angle. This is an artifact of the simplex method used to
solve the linear program. We can add a “conservative” energy term
that penalizes each sphere for changing any of its coordinates. In

w

to be the unit vector pointing frorfi; to S;. The convex regiofR ;;
is the set of configurations satisfying

(py —pi) - uiy” > ri+ry, forl <i<j<n. (2)

The half-space constraipf — p; € R;; prevents the spheres from
overlapping, and it is exactly equivalent to one of the half-spaces in
the first step of the algorithm in Section 3.2.2.

For a sphere; and the hourglass polyhedré we do the fol-

lowing. Seth = 1. Letg,, be the point on the boundary 6fclosest
to ps*'. Let,
cur pft;ur

= —4n
Vhi = |pc‘ur
7

— ¢
be the unit vector frong, to p;"*. We create the constraint,

(pi — qn) - VRs > 14, )

and we throw away all points of the boundary ot which do not
satisfy
(P = an) - v > 0.

4The Blue Moon Rendering Tools by Larry I. Gritz.

particular, we express each variableasz; = x:f — z;, where

bothz} andz; are constrained to be positive;(could represent
thez, y, or z coordinate of a sphere). To the objective function, we

add
Cconserve Z(CE;I- + xl_),

wherecconserve IS SMall compared to the “gravitational constant”.
In our system, the gravitational constantis 1 and:crve = 0.001.

The second hourglass vidélustrates the addition cdicceleration
and “conservative forces”.

5Version 3.0. CPLEX Optimization Inc. Suite 279. 930 Tahoe Boule-
vard, Building 802. Incline age, Nevadaé&9451-9436.



4.5 Polyhedron-Polyhedron Constraints Adding more vectors t&/ makesd;; a better approximation to the
Euclidean distanclp; — p;|. However, the givel/ is sufficient for

The hourglass example does not require polyhedron-polyhedron,jisiic motion, and the presence:df” ensures correct conver-

constraints. For the record, we describe how one could add themgence.

0 th.,e model. . For a constant forc¢;; of attraction betwee; and.S; (inde-
Li's method for constructing a convex subset of the free space, pendent of distance), we can add the tefmi;, to the potential
thelocality heuristic requires that the interacting polygons be star- £ ,ction for the model. Often, however, one desires a force which

shaped. If they are not, they must be decomposed into star-shapedgjes off” with distance, such as the inverse-square law. The corre-
components. Extra constraints must be added to ensure that the,

components move as one object.

We describe here a method for selecting a convex free region

Ri; for a pair of polyhedraP; and P; under translation. As in

the case of modeling spheres, we can construct these regions for

each pair of polyhedra instead of having to worlA™ as implied

ponding potential functior f;;/d;; is nonlinear. In this case, we
use a linear approximation,
1 dij — d3)"

~ Jcur cur )
di] (dz] )2

Eapprox (dij ) = fij (

by the algorithm of Section 3.2.2. Note that this method does not FOr any convex potential function, such as the inverse-square law,
require thatP; and P; be star-shaped, which is an improvement of ~the linear approximation is an upper bound on the actual potential

Li's result. Let P; represent the “resting” position df;, and let
P; + p; represent’; translated by, from its resting position. As
stated in Section 3.3.®; + p; and P; + p; do not overlap if and
only if p; — p; liesin F = P; & —P;. This is all following theory
developed by Li to handle the two-dimensional case.

For a given pairwise configuratiafy;” = (p;™", p;""), we con-
struct convex regiofR ;; as follows. Set = 1 and letg, be the

point on the boundary of which is closesttg;™" — p;"". Define

cur cur
wcur _ p] — D
hiy — cur cur

|PJ - P

.
— qn|

to be the unit vector fromg, to to pi™ — p;"". Add the constraint,
(p; —pi —qn) - whyy > 0. 3)
Throw away all pointg of the boundary of" that do not satisfy
(¢ = qn) - whi; > 0.

Increment: and repeat until no points of the boundaryfofemain.

energy. The configuration to which the system “jumps” will there-
fore havdowerenergy than expected, and thus the system will con-
verge even if it uses this approximation.

5.2 Spring Force

It is possible to model forces whidhcreasewith distance such as a
spring force. In this case, the potential functiodigl;; ) = fi;dz;.

This type of function is concave (upwards), and thus the method in
the previous paragraph does not work. To solve such a model using
linear programming, we replace the function by a piecewise linear
approximation. First, definevariablesd < d;;1,dij2, ..., dij <

1 and add the constraint;; = d;;1 + dijo + -+ + diji. The
piecewise linear approximation to the energy function is

14
Eapprox(di]) = fi] Z(zk — 1)d”k
k=1
Fork < d;; < k + 1, this energy is minimized whe#;;; =
dij2 = -+ = dijp = 1 andd,jx41) = di; — k. The value of the
approximate function ifi; (k* + (2k + 1)(d:; — k)) which is a

The set of constraints given by all instances of Equation 3 define a good approximation tg; ; dfj.

convex regiorR ;; which is a subset of the free space for these two

polyhedra. This region is the projectionkifc;, ) of Section 3.2.2

into the configuration space of these two polyhedra (actually, it can

5.3 Examples.

be a superset). For this reason, it is sufficient to use these pairwiseThe video illustrates the application of the constant force, inverse-

constraints.

5 Non-gravitational Potential Functions

square law force, and spring force.

In the “trampoline” example, the border of the 30 by 30 grid of
spheres is fixed. Each internal grid sphere is attracted to its four
immediate neighbors under the constant force. The large sphere
falls into this grid and comes to rest. We fake the “bouncing” by

For some applications, it may be necessary to simulate a constanplaying the sequence forwards and backwards.

force, a “spring” force, or an inverse-square law force between
spheres. In this section, we describe how this can be done, and

give some examples.

5.1 Attraction between Spheres.

5.4 Other Possible Applications.

The examples we have implemented only scratch the surface of
what one could do with the current formulation. For example,
we could apply these new potential functions to two animations:

To define an attractive force between spheres, we must first definea pearl falling in “sharpoo” and a “lava lamp”. The shampoo or
the distance between spheres in a way that can be represented in damp fluid” is a grid-like “gas” of spheres. A constant force at-

linear program. In the followingl < ¢ < j < n, wheren is the
number of spheres. Le&t; and.S; be spheres which are to attract
each other.

Create a new variablé;; which represents an approximation to
the distance fronp; to p;. The value ofd;; will always be a lower
bound on the Euclidean distance. Select d/set unit vectors. The
setU should at least include;;" (the unit vector fromp; to p,)
and the six axis-parallel vectofs-1, 0, 0), (0, +1,0), (0,0,+1).
Apply the following constraints op;, p;, andd;;:

u- (p; —pi) < dij, forueU. (4)

tracts spheré; to a fixed grid poing;. The algorithm for modeling
attraction of a moving poing; to a fixed poini; is straightforward
from the math given above.

The pearl is a single sphere in a gravitational potential falling
through a “shampoo.” The lava lamp fluid uses the same model. We
also add a rising “blob” of lava fluid subject to an upwards gravita-
tional field. The beads in the “blob” fluid are subject to a mutually
attractive force. For this we choose a potential function which rises
linearly to a particular value and then stops increasing. This po-
tential corresponds to a constant, short-range force. This potential
function is convex, and thus linear programming can minimize it.



6 Implementation and Results minima for many interacting objects. They are much faster than
other physical simulation techniques, and they are certainly useful
All examples in the video are a simple mapping of optimization for CAD/CAM applications for which only the final configuration
steps to frames. We believe that these demonstrate a variety of rematters. The current techniques do not allow rotation in three di-
alistic looking motions. If necessary, we could modulate the ve- mensions (a moot issue for spheres but not for moving polyhedra),
locity by interpolating between frames. Since consecutive frames but Li [19] has found ways to allow rotation in two dimensions, and
correspond to motion fromto ¢’ in the same convex region, every it may be possible to generalize this work to three dimensions or de-
interpolated configuration would also be valid. vise other methods. The algorithms presented here do not simulate
true physical motion: 1) the physics is only semi-Newtonian, and 2)
the algorithms use a number of approximations to allow us to apply
linear programming. However, in graphics appearance and speed
As usual, our program is always in flux, and it is difficult to gener- are really all that matters, and these methods rapidly generate mo-
ate meaningful timings. The running time depends greatly on the tions which appear realistic. Since no other method can currently
settings of the parameters to the linear programming library. Cur- generate such motions with so litle computation, position-based
rently, we use the simplex method. We find that reaching 80-90% of physics and linear programming based simulations warrant consid-
optimum requires only about one-quarter the time as reaching theeration as useful tools of computer graphics.
optimum objective value. Hence, each step can be accomplishedin Even for 1000 spheres in a polyhedron, the simulation time is
one-quarter the time using only 0.8 = 1.25 times as many steps.  faster than the rendering time. For even larger number of spheres,
This is clearly a good trade-off. At present, we run each linear pro- one would have to break the set of spheres into “zones” and sim-
gram for 5000 simplex steps, and this always brings us to within ulate within each zone. By switching between overlapping zones,
80% of optimal. one could still generate g@ood animation. Mlti-scale techniques
Using these particular methods, we can compute each frame ofmight also be applicable [20].
the second hourglass video in about 1.1 minutes on a DEC Al-  The issue of non-convex sets of valid directions arises for sets of
pha 3000/700 (tm). The entire video can be generated in abouttranslating polyhedra. However, we believe that this potential diffi-
19 hours. culty will not have a practical impact. A difficult practical problem
We ran the program with only 500 spheres, and each frame wasis that of explicitly computing configuration apes (Minkowski
computed 2.4 times faster than with 1000 spheres. Some of the costums) for pairs of translating non-convex polyhedra. Dealing with
is a naiveO(n”) geometric algorithm, and the cost of this can be rotations will be even more difficult. However, we believe these
improved. In essence, the cost per step appears to be roughly lineagifficulties can be overcome. Position-bagetysics may one day
in the number of spheres. Of course, about half as many steps argimulate many highly interacting, translating and rotating polyhe-
required to simulate the hourglass. Therefore, the cost appears tadra, with links and attractive and repulsive forces.
be roughly quadratic in the number of spheres. As we discussin  Another direction of future work is to handle the transition from
Section 7, this is not necessarily the last work. It is unlikely that crowding to freedom. Position-based physics does not do a good
distant spheres interact over small numbers of steps. Therefore itjob on freely moving objects. Section 4.4 describes how to make the
should be possible to decompose the problem and/or apgl mu  falling spheres appear szcelerate. We use another “trick” to make

6.1 Running Times and Scalab ility

scale methods. the ball appear to bounce in the trampoline video. A more gen-
eral solution would somehow switch between the position-based

6.2 Number of lterations method and an acceleration/velocity-based method in a way that is
low-cost yet realistic.

If we are simply generating a “pile” or “clump”, we usually do not Acknowledgements Thanks to Kevin Duffy for implementing

have an obstruction like the neck of the hourglass through which many of the algorithms as a summer job. Thanks to Lisa Ventry
the spheres must pass more or less sequentially. The following ta-Milenkovic for proofreading and literature search. Thanks to Karen
ble gives the number of iterations fotkeby &k by & grid of spheres Daniels for proofreading and suggestions.

falling to rest in abox. The number iterations rises surprisingly

slowly. This compares very favorably with acceleration or velocity-
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