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Abstract

This paper proposes a simplifiedposition-basedphysics that allows
us to rapidly generate “piles” or “clumps” of many objects: loca
energy minima under a variety of potential energy functions. W
can also generate plausible motions for many highly interacting
jects from arbitrary starting positions to a local energy minimum
We present an efficient and numerically stable algorithm for c
rying out position-based physics on spheres and non-rotating p
hedra through the use of linear programming. This algorithm is
generalization of an algorithm for finding tight packings of (non
rotating) polygons in two dimensions. This work introduces lin
ear programming as a useful tool for graphics animation. As
name implies, position-based physics does not contain a notion
velocity, and thus it is not suitable for simulating the motion o
free-flying, unencumbered objects. However, it generates reali
motions of “crowded” sets of objects in confined spaces, and it d
so at least two orders of magnitude faster than other techniques
simulating the physical motions of objects. Even for unconfinedo
jects, the new algorithm can rapidly generate realistic “piles” a
“clumps.”

CR Descriptors: G.1.6 [Numerical Analysis]: Optimization -
Linear Programming; I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling -Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism
- Animation; I.6.8 [Simulation and Modeling]: Types of Simula-
tion - Continuous.

1 Introduction

To generate realistic animation, recent work in computer graph
has focused on methods to simulate the motion of objects under
laws of physics. Suppose one wants to create an animated da
Instead of laboriously choosing a sequence of poses, one crea
model of a dancer with masses, joints, and forces, and lets the l
of physics do the dancing. The laws of physics are well understo
(for this domain), and current computers can simulate physics

1Department of Mathematics and Computer Science, University of M
ami, P.O. Box 249085, Coral Gables, FL 33124. The research of Vic
J. Milenkovic was funded by the Textile/Clothing Technology Corporation
from funds awarded to them by the Alfred P. Sloan Foundation and by N
grants CCR-91-157993 andCCR-90-09272.
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these types of models in near to real time. The main difficulty
this approach is choosing a set of forces (parameters for the mo
that allow the dancer to dance and not fall on its face. Howe
there are other domains for which the forces are easily determ
but the physics is very difficult to simulate. Consider the proble
of generating a “pile” or “clump” of many objects under gravity o
mutually attractive forces. Creating or even verifying an equil
rium state of the physical system is a complex problem. Cons
further the problems of animating the sand in an hourglass or
sand on the beach as someone sets foot on it. Consider eve
problem of animating the molecules of fluid in a lava lamp. The
models involve many highly interacting three-dimensional objec
For even a modest number of grains of sand or molecules, the
ulation outstrips our computational resources.1

This paper proposes a simplifiedposition-basedphysics that al-
lows us to rapidly generate “piles” or “clumps” of many object
local energy minima under a variety of potential energy functio
Position-based physics allows us to rapidly generate plausible
tions for sets of many highly interacting objects. We present an
ficient and numerically stable algorithm, based on linear progra
ming, for carrying out position-based physics on spheres and n
rotating polyhedra. This algorithm is a generalization of an alg
rithm for finding tight packings of (non-rotating) polygons in tw
dimensions. This work introduces linear programming as a us
tool for graphics animation. As its name implies, position-bas
physics does not contain a notion of velocity, and thus it is not s
able for simulating the motion of free-flying, unencumbered o
jects. However, it generates realistic motions of “crowded” s
of objects in confined spaces, and it does so at least two orde
magnitude faster than other techniques for simulating the phys
motions of objects. Even for unconfined objects, the new algorit
can rapidly generate realistic “piles” and “clumps.”

Section 2 compares position-based physics to other method
physical simulation such as velocity-based contact force meth
It describes two problems which severely slow down velocity-ba
methods: local and global “rattling.” Section 3 gives the formal def-
inition of position-basedphysics and gives an algorithm to carry
out. For a system of translating objects that involves only sphe
sphere and sphere-polyhedron contacts, it is proved that the li
programming based algorithm converges to an equilibrium of
potential energy function: the algorithm cannot “stick” at a no
equilibrium configuration. Section 4 describes how to impleme
the algorithm using linear programming to simulate position-ba
physics on a set of spheres inside a polyhedron, in particular, a s
1000 spheres inside an “hourglass”. Section 5 shows how to h
dle non-gravitational potential functions such as attraction am
the spheres. Section 6 presents results and running times, and
tion 7 discusses the implication of this work and directions of futu
research.

1Also, numerical instability, which is a minor problem for the simulatio
of robots or dancers, becomes a serious impediment when the numb
interacting objects rises into the hundreds, thousands, or beyond.
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2 Techniques for Physical Simulation

We categorize physical simulation techniques as acceleratio
based, velocity-based, or position-based. Acceleration-based m
ods come closest to simulating true physics, and they are the m
expensive to carry out in computation. Velocity-based methods a
farther divorced from “reality” but are faster. Position-based met
ods are the farthest from reality and the fastest.

Spring model methods (also calledpenalty methods) [25] [26]
are typical acceleration-based methods. They allow the objects
overlap. For each pair of overlapping objects, there is a repuls
force proportional to the amount of overlap. The resulting repulsive
forces cause the objects to accelerate. Numerical integration c
verts acceleration to velocity and then to position. These methods
require many small time-steps when the acceleration is high. T
large number of steps results in a high computational cost. Als
it is often difficult to determine the correct step size. Incorrect di
cretization of time can cause unusual numerical results such as n
conservation of energy or momentum.

Contact force model methods (also calledanalytical methods)
[14] [1] [8] are examples of velocity-based methods. See [4] fo
a discussion of the many issues involved in contact force mode
Rigid bodies are allowed to contact but not overlap. Given the cu
rent set of contacts, the method computes a set of consistent
locities such that no two contacting objects penetrateeach other.
The objects move with these velocities until a new contact occu
The velocity-based method is much more stable and faster than
acceleration-based method for two reasons: 1) it can exactly co
pute the time of the next contact, and 2) the resulting time-st
tends to be much larger than that needed to accurately carry
numerical integration. Even though these methods do not sim
late acceleration, they can handle increasingly sophisticated ty
of objects and forces: curved surfaces [2], friction [3], and flexib
bodies [7]. Unfortunately, the velocity-based method is subject
two problems which cause small time-steps and thus high comp
tational cost.Local rattleoccurs when one object bounces betwee
two others (such as the rapid bouncing that occurs when you br
a paddle down on a bouncing ping-pong ball).Global rattle occurs
when there are many interacting objects. Since there are so man
is inevitable thatsomepair will make contact in a short amount of
time. Even systems which can rapidly detect the next collision [1
cannot reduce the number of collisions. Each new contact forces us
to recalculate the velocities.

Just as a velocity-based method eliminates accelerations
position-based method eliminates velocities (and also time, m
mentum, and kinetic energy). The model only needs to have a p
tential energy function. Under position-based physics, the obje
are allowed to move from their current configuration (positions
to a lower energy configuration along any valid (non-overlappin
energy-diminishing path. Under a linear programming based alg
rithm for position-based physics, the motion consists of a sequen
of steps yielding a piecewise linear path. Each step diminishes
energy as much as possible within some maximal valid convex
of configurations surrounding the current configuration. This co
vex set depends both on contacts that are occurring and on all c
tacts that might occur. Therefore the algorithm does not have
stop prematurely to handle a new contact, and there is no local “r
tle”. Position-based physics also avoids global “rattle” sinceeach
object moves a maximal amount. Even if two objects in the mod
require only a small motion to come into contact, this does not pr
vent other objects in the model from moving farther, if they are ab
to.

In his Ph.D. thesis [19] and in joint work with this author
[22, 23], Li introduced the concept of position-based modelin
His application iscompaction: finding tight packings of polygo-
nal objects in the plane. As he and others have noted [29, 3
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for most layout applications the motion of the objects is immat
rial, and only the final configuration matters. He attempted to car
out compaction using a velocity-based method similar to Baraff
[1], but he found this to be very expensive computationally an
also numerically unstable. He formulated a position-based mo
and algorithm. This algorithm uses Minkowski sums [27, 13] an
a locality heuristicto calculate a maximum convex region of the
configuration space visible to the current configuration. Linear pr
gramming finds the lowest energy configuration in this region, a
the model jumps to this configuration. According to his exper
ments, the method typically reaches a local energy minimum in fi
or fewer jumps even for a layout of more than 100 polygons wi
up to 75 vertices per polygon. For the examples which were simp
enough for him to carry out the velocity-based minimization, th
position-based method was at least two orders of magnitude fas

The algorithms presented in this paper also use position-ba
physics. For sphere-sphere and sphere-polyhedron interactio
they do not require explicit calculation of the Minkowski sum (un
like Li’s method for polygons). For polyhedron-polyhedron inter
actions, they do require calculation of the Minkowski sum, but un
like Li’s locality heuristic, they do not require that the polyhedra
be decomposed into star-shaped2 components. The new algorithms
can solve for the motions of spheres and polyhedra, whereas L
algorithm is restricted to two-dimensional polygons.

Interestingly enough, some recent work has movedawayfrom
the use of large complex optimization systems [5]. Position-bas
physics reduces motion planning to linear programming. Instead
dealing with implementing optimization code ourselves, we sim
ply use a commercial linear programming library. Goldsmithet al.
[12] discuss a number of ways optimization is applied in the field
graphics. Most of these involve “either starting or finishing prob
lems.” Furthermore, most are non-linear. We believe that position-
based physics is unique in the way it uses linear programming
generate a complex motion from start to finish.

Position-based physics yields realistic motion for crowded se
of objects. For free-flying objects, the motion can be less reaso
able. However, even in situations for which position-based metho
give an unrealistic motion, there may be other applications. Rec
work on manipulation of models makes use of non-physical motio
[6] [15].

Finally, it is important to note the difference between position
based physics and particle-based systems. Examples of parti
based systems are too numerous to note all of them. See [
[17] [31] [33] [10] [9] [21] for recent work. In general, particle-
based systems model moving particles with forces between the
not rigid colliding objects. Simulating rigid objects using parti
cles requires a very steep repulsive energy gradient, and he
particle-based systems are subject to the same difficulties as o
acceleration-based methods: small time-steps and long runn
times.

3 Position-Based Physics

The philosophy behind position-based physics is to dispense with
acceleration, force, velocity, and time. The state of the system is
current configuration (position). The system has a potential ene
that depends only on the configuration. There is no notion of kine
energy.

Section 3.1 defines position-based physics and describes h
it can be used for modeling and animation. Section 3.2 gives
algorithm for simulating position-based physics on models with
smoothly convex decomposableoverlap space: the set of forbidden
configurations is a union of convex regions with smooth boundari

2A region isstar-shapedif it contains at least one point which can “see”
the entire boundary.
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This algorithm uses linear programming. Section 3.3 proves th
several types of models have smoothly convex decomposable o
lap spaces. Among these are models involving translating sphe
inside a fixed polyhedron. We describe what modifications are ne
essary to handle multiple translating polyhedra.

3.1 Definitions

As per typical usage,configuration spacedenotes the concatenation
of the degrees of freedom of the model. For a set ofn spheres, the
configuration space has3n dimensions. Thefree spaceis the set
of configurations for which no pair of objects overlap.3 Thesefree
configurations are also referred to asvalid or non-overlapping. The
complement of the free space is the set ofoverlapping, invalid, or
forbiddenconfigurations. We denote the free space byF .

We assume that the model has a potential energy which is a c
tinuous and differentiable real-valued function on the configuratio
space. For configurationc, the energy is denotedE(c).

A valid motion under position-based physics is an energy-
diminishing path inF . Given a starting configurationc 2 F , the
goal is to generate a continuous and piecewise differentiable cu
(t) such that 1)(0) = c, 2) (t) 2 F for t � 0, 3)E((t)) is
monotonically decreasing fort � 0, 3) limt!1 (t) = c

1
is an

equilibrium configuration. A configurationcequil is anequilibrium
configurationif every valid curve�(t) out of cequil (�(0) = cequil
and�(t) 2 F for t � 0) is non-energy-decreasing:d

dt
E(�(t)) �

0.
Note thatt is not time andc

1
may not be the equilibrium state

reached by a velocity-based or acceleration-based physics with
same potential energy function. However, a limiting value of(t)
is a valid resting position: a “pile” or “clump”. To generate a de
cent looking animation, we can sample(t) in a way that makes
it appear that the objects in the model are moving with constant
varying velocity, as desired. Also, as shown in Section 4.4, it
possible to add additional constraints on the path to make it app
more natural.

3.2 Linear Programming Based Algorithm

This section gives an algorithm for performing position-base
physics on models with a particular type of free/forbidden spac
The algorithm is proved to have an equilibrium position as a lim
point. If the energy function is linear, then the algorithm can b
implemented using linear programming.

3.2.1 Smooth Convex Decompositions

A set S ofRn is defined to beconvex decomposableif it is the union
of a finite number of convex sets. It issmoothly convex decompos
able if it is the union of a finite number of convex sets with smoot
boundaries. We use a standard definition of smooth: a convex setC
is smooth if each point on the boundary has a unique tangent pla
and outward unit normal vector and if this plane/normal is a co
tinuous function on the boundary. Actually, it is easy to show th
if C is convex and if each point on the boundary ofC has a unique
outward unit normal, then the normal vector varies continuously
the boundary.

3.2.2 Algorithm

The following is an algorithm for position-based physics whe
the overlap (forbidden) spaceO = F is smoothly convex de-
composable. RegionO is the union ofm smooth convex regions
O1;O2;O3; : : : ;Om.

3We consider theexteriorof the container to be a fixed object, and henc
the definition of free space includes the container constraint.
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Let c = c0 be the initial configuration. The algorithm sets
(0) = c. The algorithm proceeds in a sequence of steps. Du
ing theith step, it constructs the portion of the curve from(i� 1)
to (i). Let us suppose the algorithm has constructed the curve
to configuration(i) = ci. Here is how it performs the next step.

� For each convex regionOj , it constructs the half-space
H(ci;Oj) as follows. First it projectsci onto the nearest point
PROJ(ci;Oj) onOj . It computes the tangent plane toOj at
PROJ(ci;Oj). This tangent plane bounds two half-space
andH(ci;Oj) is the one which doesnot contain the interior
ofOj .

� The algorithm computes the convex region

I(ci;F) =

m\

j=1

H(ci;Oj):

AssumingF is closed (objects are allowed to touch), it fol-
lows thatI(ci;F) � F .

� The algorithm computes the minimum energy configuratio
ci+1 2 I(ci;F)which is reachable by an energy-diminishing
path from(i) = ci to (i+ 1) = ci+1 within I(ci;F).

In general, the last step requires some sort of numerical integrati
However, if the energy function is linear, it can be accomplished u
ing linear programming. Linear programming can easily compu
the pointci+1 2 I(ci;F) which minimizes the energy. The algo-
rithm can set(t), i � t � i+ 1 equal to the line segment fromci
to ci+1. SinceI(ci;F) is convex, this segment is valid.

3.2.3 Correctness and Convergence

The following theorem states that the limit points of the algorithm
are equilibrium points. This does not mean that the algorithm ha
unique limit. If we have a room full of falling objects, some object
might already be on the floor. Any arbitrary motion of an objec
along the floor does not change the gravitational energy. For o
i, configurationci could have a particular object at one end of th
room. For eveni, it could be at the other end of the room. Thus, a
the rest of the objects settled into a “pile”, this one object may nev
come to rest. Nothing in the definition of position-basedphysics
prevents it from bouncing from one wall to the other forever. In th
case, the system will have two limit points.

Any particular linear programming library will “break ties” con-
sistently. Therefore, it will not allow an object to bounce from wa
to wall forever. It is also possible to introduce aconservativeen-
ergy term: each object is attracted to its current location. Both
these facts can be used to ensure that the algorithm converges
unique limit. Section 4 illustrates both of these for spheres insi
a polyhedron. It is probably possible to modify the definition o
position-based physics and the algorithm to disallow “bouncing
However, there may be cases in which wewantthis behavior. Note
that “bouncing” is not like rattling. Bouncing does not affect the
amount by which the energy is reduced in one step, and therefor
does not increase the number of steps required to reach an en
minimum. For velocity-based methods, frequent collisions dimin-
ish the time-step and greatly increase the time required to reac
minimum.

We remind the reader that the definition of an equilibrium poin
depends only onF and the energy functionE(). An equilibrium
point for position-based physics is the same as an equilibrium point
for any other type of physics. Therefore, the following theorem a
serts that the algorithm converges to physically correct “piles” an
“clumps”. It does not get stuck at a non-equilibrium configuration.
However, most models have very many equilibrium configuration



lib

it

e

o

m
o
s”

e

.
al

-

i
s is

e

thly
nvex

ir-

r

os-

g
thly
t of
ble:

l-
m-
can

.
al
ps

,

go-
ent
or
ne
The algorithm does not necessarily converge to the same equi
rium as a “true” simulation of physics.

Theorem 3.1 For compact (closed and bounded)F , the sequence
c0; c1; c2; c3; : : : generated by the algorithm has at least one lim
point. Each limit point is an equilibrium point.

Proof: The existence of a limit point is a property of any sequenc
in a compact set. Letclim be a limit point. Supposeclim is not an
equilibrium point. Therefore, there is a curve�(t) out ofclim which
diminishes the energy. It follows that the energy decreases out
clim in the directionv = �0(0) (the tangent vector to�(t) att = 0).
For eachj, clim either lies outside or on the boundary ofOj . If it
lies outside, then there exists� > 0 such thatclim + tv 62 Oj for
0 � t < �. If clim lies on the boundary ofOj , thenv must lie in
the tangent plane toOj at clim or it must point intoH(clim;Oj).
Hence, there exists� > 0 such thatclim + tv 2 I(clim;F) for
0 � t < �. Also,E(clim + tv) has the same derivative att = 0
asE(�(t)). The conclusion is thatif the algorithm reachedclim,
the next step would be able to diminish the energy. Let�lim be the
amount of decrease.

The algorithm hasclim as a limit point. The construction of
I(ci;F) uses only continuous functions. Forci sufficiently close to
clim, the energy decrease�i = E(ci)� E(ci+1) can be arbitrarily
close to�lim. SinceE() is also continuous, there must exist somei
such that

E(ci)�E(clim) <
�lim

2
and E(ci)�E(ci+1) = �i >

�lim

2
:

It follows thatE(ci+1) < E(clim). Since the algorithm always
decreases the energy,clim cannot be a limit point. This contradicts
the assumption thatclim is not an equilibrium point.

3.3 Models with Convex Decompositions

This section examines some models with smoothly convex deco
posable overlap spaces. It is shown how to apply the algorithm
Section 3.2.2 to the problems of animating and generating “pile
of spheres and polyhedra under translation.

3.3.1 Minkowski Sum.

TheMinkowski sum[24, 13, 27, 28] of two point-sets (ofR3 in the
case of this paper) is defined

A� B = fa+ b ja 2 A; b 2 Bg:

For a point-setA, letA denote the set complement of A and defin
�A = f�a ja 2 Ag. For a vectorv, defineA+ v = fa+ v ja 2
Ag. Note thatA + v = A� fvg.

Suppose we haven translating objectsA1; A2;A3; : : : ;An. It
can easily be shown thatAi + vi andAj + vj overlap if and only
if vj � vi 2 Ai ��Aj.

Lemma 3.2 If C is convex andS is smoothly convex, thenC � S
is smoothly convex.

Proof: It is easy to show thatC � S is convex. Supposep is a
point on the boundary ofC � S such thatp has two distinct unit
normal vectorsu andu0. Sinceu is a normal atp, p maximizes the
dot productu � p over all points inC � S. Sincep = c+ s where
c 2 C ands 2 S can be chosen independently,s must maximize
u � s over all points ofS. Yet, p = c0 + s0 wherec0 2 C and
s0 2 S have maximum dot products withu0. Sinces has a unique
normal,u0 is not a normal ats, andu0 � s < u0 � s0. Therefore
u0 � (c+s) < u0 � (c+s0). Therefore,p = c+s does not maximize
the dot product withu0. This contradicts the assumption thatp has
-

f

-
f

two unit normals. Therefore,p has a unique unit normal vector
It is easily shown that if a convex region with unique unit norm
vectors has continuous unit normal vectors: it is smooth.

Corollary 3.3 If C is convex decomposable and ifS is smoothly
convex decomposable, thenC � S is smoothly convex decompos
able.

Proof: Let the decompositions be,

C = C1 [C2 [ � � � [Cl and S = S1 [ S2 [ � � � [ Sm:

It can easily be shown that,

C � S =

l[

g=1

m[

h=1

Cg � Sh:

In other words, the Minkowski sum is the union of the Minkowsk
sum of each possible pair. By Lemma 3.2, each of these sum
smoothly convex.

3.3.2 “Good” Models

The following theorem describes the type of problem to which w
can apply the algorithm of Section 3.2.

Theorem 3.4 If 1) only translation is allowed, 2) all objects are
convex decomposable, and 3) at most one object is not smoo
convex decomposable, then the overlap space is smoothly co
decomposable.

Proof: For each pair of objects,Ai and Aj, at least one is
smoothly convex decomposable. Corollary 3.3 implies that the pa
wise overlap space

fhvi; vji j vj � vi 2 Ai ��Ajg

is smoothly convex decomposable. This transforms to a cylinde

fhv1; v2; : : : ; vni j vj � vi 2 Ai ��Ajg

in the configuration space for the entire model which is decomp
able into a union of smooth convex cylinders.

3.3.3 Applications

The main application of this paper is a collection of translatin
spheres in a polyhedral container. Clearly each sphere is smoo
convex decomposable. The remaining object, the complemen
the container, is polyhedral and therefore convex decomposa
simply cut it along every plane of every face.

We can not directly apply Theorem 3.4 to the problem of mu
tiple translating polyhedra since a polyhedron is convex deco
posable but not smoothly convex decomposable. However, we
“smooth” a polyhedral regionP by adding a small spherical region
S. By Corollary 3.3,P � S is smoothly convex decomposable
Of course, when we render the motion, we will display the origin
polyhedra, not the smoothed polyhedra. They will have small ga
between them equal to the diameter ofS. For moving objects, this
will not be noticeable. Once, the objects form a “pile” or “clump”
we can run the algorithm with smaller and smallerS, perhaps halv-
ing the radius each time, until the desired accuracy is attained.

Li and Milenkovic’s algorithm (for translating polygons in the
plane) uses a somewhat different framework than that of the al
rithm in Section 3.2.2. In essence, it chooses an arbitrary tang
line/unit normal when the normal is not unique. This means, f
instance, that our compaction algorithm for polygons in the pla
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might get “stuck” at a non-equilibrium configuration. We have
never seen it get stuck in practice (but we really have no indepe
dent way to verify an equilibrium other than visual inspection). It i
likely that one could safely animate multiple translating polyhed
without getting stuck. However, we have not yet run any exper
ments. Baraff [1] indicates that correctly choosing a set of tange
at each non-unique contact is NP-complete.

4 Simulating an Hourglass using
Position-Based Physics

The first section of the accompanying video tape demonstrates
simulation of an “hourglass” or “egg-timer” using position-based
physics. The main body of the hourglass is shaded as a curved
face, but it is actually a polyhedron. Each horizontal cross secti
is a 32-gon, and thus the sides of the hourglass have 160 faces.
tially, 1000 spheres are arranged in a 10 by 10 by 10 grid in t
upper part of the hourglass. Position-based physics calculates a (lo-
cal) gravitational energy minimum for the spheres in the base.
a side-effect, it simulates the flow through the narrow “waist” o
the hourglass. The video presents two hourglass simulations. B
are shown at 30 frames per second. Each frame is an actual en
minimization step. Rendering was done withrendrib.4 The first
video has 750 frames, and the second has 812 frames.

Sections 4.1 through 4.3 describe how the first video was ge
erated. Section 4.4 shows how extra constraints where added
generate a more realistic motion in the second video. The modifi
algorithm has acceleration and conservative forces. This video
lustrates how the path generated by position-based physics can
controlled to increase the realism.

4.1 Pairwise Constraints

Instead of working in3n-dimensional space, we choose a conve
subset of the pairwise free spaces. We must do this for each p
of spheres and each sphere with respect to the hourglass poly
dron. Taken together, these constraints are equivalent toI(c;F) of
Section 3.2.2.

For a pair of spheresSi andSj with radii ri andrj and current
positions (centers)pcuri andpcurj , define

u
cur
ij =

pcurj � pcuri

jpcurj � pcuri j

to be the unit vector pointing fromSi toSj . The convex regionRij

is the set of configurations satisfying

(pj � pi) � u
cur
ij � ri + rj ; for 1 � i < j � n: (1)

The half-space constraintpj � pi 2 Rij prevents the spheres from
overlapping, and it is exactly equivalent to one of the half-spaces
the first step of the algorithm in Section 3.2.2.

For a sphereSi and the hourglass polyhedronG, we do the fol-
lowing. Seth = 1. Letqh be the point on the boundary ofG closest
to pcuri . Let,

v
cur
hi =

pcuri � qh

jpcuri � qhj

be the unit vector fromqh to pcuri . We create the constraint,

(pi � qh) � v
cur
hi � ri; (2)

and we throw away all pointsp of the boundary ofG which do not
satisfy

(p� qh) � v
cur
hi > 0:

4The Blue Moon Rendering Tools by Larry I. Gritz.
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(Intersecting a half-space with a polyhedron is easy if the faces
all convex: the intersection of each face with the half-space is a
convex.) If some part of the boundary remains, then we increme
h and repeat this process. We stop when no point on the bound
of the polyhedron remains. The resulting set of linear constrain
on pi given by all instances of Equation 2 defines a convex regio
Ri which is a projection ofI(ci;F) of Section 3.2.2 (actually, it
can be a superset, but that can only improve the convergence).

4.2 Minimizing the Potential Energy

For the hourglass example, the potential energy is the sum of
z-coordinates of the spheres. This corresponds to the gravitatio
energy of a set of spheres with equal mass.

How do we find the next configuration? We need to solve fo
the configuration that minimizes the gravitational energy under t
linear constraints of Equations 1 and 2. This is linear programmin
We simply pass this problem to a commercial linear programmin
package, CPLEX.5

Theorem 3.4 implies that the hourglass algorithm cannot “stic
unless the actually physical system would also. Hence, the sphe
flow down the hourglass without “clogging” in the middle.

4.3 Box Constraints

We also bound each sphere to lie in a rotated cube centered at
current position of the sphere. The cube has width two times t
sphere radius, and it is oriented to have a vertex at minimumz-
coordinate. This constraint serves to put an upper bound on
maximum distance a sphere can move in any one step.

This extra constraint serves two purposes. First, it keeps t
spheres from falling too fast. In the absence of this constraint
solitary sphere could fall to rest on the ground from an arbitrary
height in a single step. Second, by limiting the motion of the
spheres, we limit the pairs of spheres which can collide in the cu
rent step. That permits us to reduce the size of the linear progra
We do not add a pairwise constraint for two spheres that are t
far apart to collide in the next step. We can use bucketing to det
nearby pairs of spheres in nearly linear time.

4.4 Acceleration and Conservative Forces

The reader will notice that the spheres do not accelerate as they
We could fix this by detecting if a sphere has fallen the maximu
amount, and if so, increasing the height of its bounding box by
fixed amount. To make this work properly, we must use unrotat
boxes, unlike the rotated cubes of the previous section.

The reader will also notice that the spheres roll to the back
the hourglass. Using unrotated boxes makes this effect worse:
spheres fall to the lower-left-rear corner of the box, making the
fall at an angle. This is an artifact of the simplex method used
solve the linear program. We can add a “conservative” energy te
that penalizes each sphere for changing any of its coordinates.
particular, we express each variablexi asxi = x+i � x�i , where
bothx+i andx�i are constrained to be positive (xi could represent
thex, y, orz coordinate of a sphere). To the objective function, w
add

cconserve
X

i

(x+i + x
�

i );

wherecconserve is small compared to the “gravitational constant”
In our system, the gravitational constant is 1 andcconserve = 0:001.
The second hourglass videoillustrates the addition ofacceleration
and “conservative forces”.

5Version 3.0. CPLEX Optimization Inc. Suite 279. 930 Tahoe Boule
vard, Building 802. Incline Village, Nevada89451-9436.
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4.5 Polyhedron-Polyhedron Constraints

The hourglass example does not require polyhedron-polyhed
constraints. For the record, we describe how one could add th
to the model.

Li’s method for constructing a convex subset of the free spa
the locality heuristic, requires that the interacting polygons be sta
shaped. If they are not, they must be decomposed into star-sha
components. Extra constraints must be added to ensure tha
components move as one object.

We describe here a method for selecting a convex free reg
Rij for a pair of polyhedraPi andPj under translation. As in
the case of modeling spheres, we can construct these region
each pair of polyhedra instead of having to work inR3n as implied
by the algorithm of Section 3.2.2. Note that this method does n
require thatPi andPj be star-shaped, which is an improvement o
Li’s result. LetPi represent the “resting” position ofPi, and let
Pi + pi representPi translated bypi from its resting position. As
stated in Section 3.3.1Pi + pi andPj + pj do not overlap if and
only if pj � pi lies inF = Pi ��Pj. This is all following theory
developed by Li to handle the two-dimensional case.

For a given pairwise configurationccurij = hpcuri ; pcurj i, we con-
struct convex regionRij as follows. Seth = 1 and letqh be the
point on the boundary ofF which is closest topcurj � pcuri . Define

w
cur
hij =

pcurj � pcuri � qh

jpcurj � pcuri � qhj

to be the unit vector fromqh to topcurj � pcuri . Add the constraint,

(pj � pi � qh) �w
cur
hij � 0: (3)

Throw away all pointsq of the boundary ofF that do not satisfy

(q � qh) �w
cur
hij � 0:

Incrementh and repeat until no points of the boundary ofF remain.
The set of constraints given by all instances of Equation 3 defin
convex regionRij which is a subset of the free space for these tw
polyhedra. This region is the projection ofI(ci;F) of Section 3.2.2
into the configuration space of these two polyhedra (actually, it c
be a superset). For this reason, it is sufficient to use these pairw
constraints.

5 Non-gravitational Potential Functions

For some applications, it may be necessary to simulate a cons
force, a “spring” force, or an inverse-square law force betwe
spheres. In this section, we describe how this can be done,
give some examples.

5.1 Attraction between Spheres.

To define an attractive force between spheres, we must first de
the distance between spheres in a way that can be represented
linear program. In the following,1 � i < j � n, wheren is the
number of spheres. LetSi andSj be spheres which are to attrac
each other.

Create a new variabledij which represents an approximation t
the distance frompi to pj. The value ofdij will always be a lower
bound on the Euclidean distance. Select a setU of unit vectors. The
setU should at least includeucurij (the unit vector frompi to pj )
and the six axis-parallel vectors(�1; 0; 0), (0;�1; 0), (0; 0;�1).
Apply the following constraints onpi, pj , anddij:

u � (pj � pi) � dij; for u 2 U: (4)
n
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Adding more vectors toU makesdij a better approximation to the
Euclidean distancejpj� pij. However, the givenU is sufficient for
realistic motion, and the presence ofucurij ensures correct conver-
gence.

For a constant forcefij of attraction betweenSi andSj (inde-
pendent of distance), we can add the termfijdij to the potential
function for the model. Often, however, one desires a force wh
“dies off” with distance, such as the inverse-square law. The cor
sponding potential function�fij=dij is nonlinear. In this case, we
use a linear approximation,

Eapprox(dij) = fij(�
1

dcurij

+
dij � dcurij

(dcurij )2
):

For any convex potential function, such as the inverse-square
the linear approximation is an upper bound on the actual poten
energy. The configuration to which the system “jumps” will there
fore havelowerenergy than expected, and thus the system will co
verge even if it uses this approximation.

5.2 Spring Force

It is possible to model forces whichincreasewith distance such as a
spring force. In this case, the potential function isE(dij) = fijd

2
ij .

This type of function is concave (upwards), and thus the method
the previous paragraph does not work. To solve such a model u
linear programming, we replace the function by a piecewise line
approximation. First, definel variables0 � dij1; dij2; : : : ; dijl �
1 and add the constraintdij = dij1 + dij2 + � � � + dijl. The
piecewise linear approximation to the energy function is

Eapprox(dij) = fij

lX

k=1

(2k � 1)dijk:

For k � dij < k + 1, this energy is minimized whendij1 =
dij2 = � � � = dijk = 1 anddij(k+1) = dij � k. The value of the
approximate function isfij(k2 + (2k + 1)(dij � k)) which is a
good approximation tofijd2ij.

5.3 Examples.

The video illustrates the application of the constant force, inver
square law force, and spring force.

In the “trampoline” example, the border of the 30 by 30 grid o
spheres is fixed. Each internal grid sphere is attracted to its f
immediate neighbors under the constant force. The large sph
falls into this grid and comes to rest. We fake the “bouncing” b
playing the sequence forwards and backwards.

5.4 Other Possible Applications.

The examples we have implemented only scratch the surface
what one could do with the current formulation. For examp
we could apply these new potential functions to two animation
a pearl falling in “shampoo” and a “lava lamp”. The shampoo o
“lamp fluid” is a grid-like “gas” of spheres. A constant force a
tracts sphereSi to a fixed grid pointgi. The algorithm for modeling
attraction of a moving pointpi to a fixed pointqi is straightforward
from the math given above.

The pearl is a single sphere in a gravitational potential fallin
through a “shampoo.” The lava lamp fluid uses the same model.
also add a rising “blob” of lava fluid subject to an upwards gravit
tional field. The beads in the “blob” fluid are subject to a mutual
attractive force. For this we choose a potential function which ris
linearly to a particular value and then stops increasing. This p
tential corresponds to a constant, short-range force. This poten
function is convex, and thus linear programming can minimize it
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6 Implementation and Results

All examples in the video are a simple mapping of optimizatio
steps to frames. We believe that these demonstrate a variety of
alistic looking motions. If necessary, we could modulate the v
locity by interpolating between frames. Since consecutive fram
correspond to motion fromc to c0 in the same convex region, every
interpolated configuration would also be valid.

6.1 Running Times and Scalab ility

As usual, our program is always in flux, and it is difficult to gene
ate meaningful timings. The running time depends greatly on t
settings of the parameters to the linear programming library. Cu
rently, we use the simplex method. We find that reaching 80-90%
optimum requires only about one-quarter the time as reaching
optimum objective value. Hence, each step can be accomplishe
one-quarter the time using only1=0:8 = 1:25 times as many steps.
This is clearly a good trade-off. At present, we run each linear pr
gram for 5000 simplex steps, and this always brings us to with
80% of optimal.

Using these particular methods, we can compute each frame
the second hourglass video in about 1.1 minutes on a DEC A
pha 3000/700 (tm). The entire video can be generated in ab
19 hours.

We ran the program with only 500 spheres, and each frame w
computed 2.4 times faster than with 1000 spheres. Some of the c
is a naiveO(n2) geometric algorithm, and the cost of this can b
improved. In essence, the cost per step appears to be roughly lin
in the number of spheres. Of course, about half as many steps
required to simulate the hourglass. Therefore, the cost appear
be roughly quadratic in the number of spheres. As we discuss
Section 7, this is not necessarily the last work. It is unlikely tha
distant spheres interact over small numbers of steps. Therefor
should be possible to decompose the problem and/or apply multi-
scale methods.

6.2 Number of Iterations

If we are simply generating a “pile” or “clump”, we usually do no
have an obstruction like the neck of the hourglass through whi
the spheres must pass more or less sequentially. The following
ble gives the number of iterations for ak by k by k grid of spheres
falling to rest in abox. The number iterations rises surprisingly
slowly. This compares very favorably with acceleration or velocity
based methods. For these methods “time until next collision” ap-
pears to be inversely proportional to the number of spheres and
number of steps to be at least linear in the number of spheres.

Number of Spheres 27 64 125 216
Number of Iterations 21 25 39 54

6.3 Comparison with Velocity-Based Methods

We attempted to simulate the hourglass with a velocity-bas
method. As expected, collisions caused the time steps to be ver
small (around10�5). It takes about 150 steps to reduce the energ
by one unit. For this example, it would require 2 or 3 million step
to reach minimum energy. Each step is faster, but only by a fac
of two. We estimate it would take about 1000 times as long to rea
an energy minimum than it does using the position-based meth
of this paper.

7 Conclusion and Future Work

Position-based physics and the linear programming algorithms
use to simulate it are very good ways to rapidly find local energ
-
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minima for many interacting objects. They are much faster th
other physical simulation techniques, and they are certainly use
for CAD/CAM applications for which only the final configuration
matters. The current techniques do not allow rotation in three d
mensions (a moot issue for spheres but not for moving polyhedr
but Li [19] has found ways to allow rotation in two dimensions, an
it may be possible to generalize this work to three dimensions or d
vise other methods. The algorithms presented here do not simu
true physical motion: 1) the physics is only semi-Newtonian, and
the algorithms use a number of approximations to allow us to app
linear programming. However, in graphics appearance and sp
are really all that matters, and these methods rapidly generate m
tions which appear realistic. Since no other method can curren
generate such motions with so little computation, position-bas
physics and linear programming based simulations warrant cons
eration as useful tools of computer graphics.

Even for 1000 spheres in a polyhedron, the simulation time
faster than the rendering time. For even larger number of sphe
one would have to break the set of spheres into “zones” and si
ulate within each zone. By switching between overlapping zone
one could still generate agood animation. Multi-scale techniques
might also be applicable [20].

The issue of non-convex sets of valid directions arises for sets
translating polyhedra. However, we believe that this potential dif
culty will not have a practical impact. A difficult practical problem
is that of explicitly computing configuration spaces (Minkowski
sums) for pairs of translating non-convex polyhedra. Dealing wi
rotations will be even more difficult. However, we believe thes
difficulties can be overcome. Position-basedphysics may one day
simulate many highly interacting, translating and rotating polyh
dra, with links and attractive and repulsive forces.

Another direction of future work is to handle the transition from
crowding to freedom. Position-based physics does not do a go
job on freely moving objects. Section 4.4 describes how to make t
falling spheres appear toaccelerate. We use another “trick” to make
the ball appear to bounce in the trampoline video. A more ge
eral solution would somehow switch between the position-bas
method and an acceleration/velocity-based method in a way tha
low-cost yet realistic.
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